-
01
有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数也可分为正有理数、负有理数和零。
-
02
“有理数”这一名称不免叫人费解,而有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。“有理数”一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作时,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很明显,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
-
03
有理数的大小顺序的规定:如果a-b是正有理数,当a大于b或b小于a,记作a>b或b。任何两个不相等的有理数都可以比较大小。
-
04
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 puzdycom@126.com 举报,一经查实,本站将立刻删除。